Pif1 is a force-regulated helicase

نویسندگان

  • Jing-Hua Li
  • Wen-Xia Lin
  • Bo Zhang
  • Da-Guan Nong
  • Hai-Peng Ju
  • Jian-Bing Ma
  • Chun-Hua Xu
  • Fang-Fu Ye
  • Xu Guang Xi
  • Ming Li
  • Ying Lu
  • Shuo-Xing Dou
چکیده

Pif1 is a prototypical member of the 5' to 3' DNA helicase family conserved from bacteria to human. It has a high binding affinity for DNA, but unwinds double-stranded DNA (dsDNA) with a low processivity. Efficient DNA unwinding has been observed only at high protein concentrations that favor dimerization of Pif1. In this research, we used single-molecule fluorescence resonance energy transfer (smFRET) and magnetic tweezers (MT) to study the DNA unwinding activity of Saccharomyces cerevisiae Pif1 (Pif1) under different forces exerted on the tails of a forked dsDNA. We found that Pif1 can unwind the forked DNA repetitively for many unwinding-rezipping cycles at zero force. However, Pif1 was found to have a very limited processivity in each cycle because it loosened its strong association with the tracking strand readily, which explains why Pif1 cannot be observed to unwind DNA efficiently in bulk assays at low protein concentrations. The force enhanced the unwinding rate and the total unwinding length of Pif1 significantly. With a force of 9 pN, the rate and length were enhanced by more than 3- and 20-fold, respectively. Our results imply that the DNA unwinding activity of Pif1 can be regulated by force. The relevance of this characteristic of Pif1 to its cellular functions is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA

In Saccharomyces cerevisiae Pif1 participates in a wide variety of DNA metabolic pathways both in the nucleus and in mitochondria. The ability of Pif1 to hydrolyse ATP and catalyse unwinding of duplex nucleic acid is proposed to be at the core of its functions. We recently showed that upon binding to DNA Pif1 dimerizes and we proposed that a dimer of Pif1 might be the species poised to catalyse...

متن کامل

Physical and functional interaction between yeast Pif1 helicase and Rim1 single-stranded DNA binding protein

Pif1 helicase plays various roles in the maintenance of nuclear and mitochondrial genome integrity in most eukaryotes. Here, we used a proteomics approach called isotopic differentiation of interactions as random or targeted to identify specific protein complexes of Saccharomyces cerevisiae Pif1. We identified a stable association between Pif1 and a mitochondrial SSB, Rim1. In vitro co-precipit...

متن کامل

The Bacteroides sp. 3_1_23 Pif1 protein is a multifunctional helicase

ScPif1 DNA helicase is the prototypical member of a 5'-to-3' helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown...

متن کامل

Identification of Saccharomyces cerevisiae Genes Whose Deletion Causes Synthetic Effects in Cells with Reduced Levels of the Nuclear Pif1 DNA Helicase

The multifunctional Saccharomyces cerevisiae Pif1 DNA helicase affects the maintenance of telomeric, ribosomal, and mitochondrial DNAs, suppresses DNA damage at G-quadruplex motifs, influences the processing of Okazaki fragments, and promotes breakage induced replication. All of these functions require the ATPase/helicase activity of the protein. Owing to Pif1's critical role in the maintenance...

متن کامل

Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity.

Pif1 proteins are helicases that in yeast are implicated in the maintenance of genome stability. One activity of Saccharomyces cerevisiae Pif1 is to stabilize DNA sequences that could otherwise form deleterious G4 (G-quadruplex) structures by acting as a G4 resolvase. The present study shows that human Pif1 (hPif1, nuclear form) is a G4 DNA-binding and resolvase protein and that these activitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016